A novel framework for image forgery localization
نویسندگان
چکیده
Image forgery localization is a very active and open research field for the difficulty to handle the large variety of manipulations a malicious user can perform by means of more and more sophisticated image editing tools. Here, we propose a localization framework based on the fusion of three very different tools, based, respectively, on sensor noise, patch-matching, and machine learning. The binary masks provided by these tools are finally fused based on some suitable reliability indexes. According to preliminary experiments on the training set, the proposed framework provides often a very good localization accuracy and sometimes valuable clues for visual scrutiny.
منابع مشابه
A Novel Algorithm for Image Copy-move Forgery Detection and Localization based on SVD and Projection Data
With the widespread use of powerful image editing tools, the demand for identifying the authenticity of an image is much increased. Copy-move forgery is one of the most common and immediate tampering attacks, and is one type of image forgery where one region of an image is copied to another region in an attempt to cover some potentially important features. In this paper a Novel approach is pres...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملCopy-move forgery detection and localization by means of robust clustering with J-Linkage
Understanding if a digital image is authentic or not, is a key purpose of image forensics. There are several different tampering attacks but, surely, one of the most common and immediate one is copy-move. A recent and effective approach for detecting copy-move forgeries is to use local visual features such as SIFT. In this kind of methods, SIFT matching is often followed by a clustering procedu...
متن کاملImage Forgery Localization Based on Multi-Scale Convolutional Neural Networks
In this paper, we propose to use Multi-Scale Convolutional Neural Networks (CNNs) to conduct forgery localization in digital image forensics. A unified CNN architecture for input sliding windows of different scales is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches in the IEEE IFS-TC Image Forensics Challenge training images. With a set of caref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.6932 شماره
صفحات -
تاریخ انتشار 2013